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A. Introduction 
When we make repeated measurements 

of the same variable, we calculate the mean 
to find our best estimate of the true value of 
the variable and we calculate the standard 
deviation to estimate the width of the 
experimental distribution of the data. See 
Appendix V, Uncertainties and Error 
Propagation for more information on the 
mean and standard deviation. 

If we measure a two-dimensional dis-
tribution, i.e., two variables x and y, where y 
is a function of x, then clearly the mean is 
not a useful parameter. We generally wish to 
find how the dependent variable y depends 
on the independent variable x. 
B.  Method of Least Squares 

Suppose that we measure N coordinate 
pairs, x and y, and that we expect our data to 
fall on a curve represented by the function  
 
 y = f(x; A, B, ...) (1) 
 
where x is the independent variable and 
A, B, ... are unknown parameters. If we esti-
mate trial values of the parameters, we can 
calculate from this function values yc at each 
measured value of x, and compare these val-
ues to the corresponding measured values ym. 
Our object is to find values for the parame-
ters that minimize the disagreement between 
ym and yc.  

For comparison, we define a 
“goodness-of-fit” parameter called 2 (chi-
square) as 
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To assure that well-measured data have more 
influence on the fit than do poorly-measured 
data, we weight the data by the inverse 

squares of their uncertainties, the weighting 
factor 1/i

2. (If we set  = 1 in Eq. 2, then all 
data points are treated equally. This is the 
simplest form of the least-squares method 
which is pre-programmed in calculators and 
business spreadsheets.) We define the 
maximum-likelihood values of the parame-
ters as those values that minimize 2.  
C. Fit to a Straight Line 

In order to solve for the parameters of 
the fit, A, B, ..., we could vary the trial values 
in a regular fashion and recalculate 2 until 
we discover the values which minimize it. 
However, for functions f(x;A,B, ...) that are 
linear in the parameters, the problem can be 
solved analytically. A straight line  
 
 y = f(x;A,B) = A + Bx  (3) 
 
is such as function (as is any polynomial in 
x.) 
To find the maximum-likelihood values of A 
and B, we first substitute y from Equation 3 
for yc in Equation 2, yielding  
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To minimize 2, we take partial derivatives 
with respect to the two parameters A and B 
and set them to zero. This gives two coupled 
linear equations that can be solved directly 
for A and B. We can find the uncertainties in 
the fitted values of the parameters A and B 
by applying the error propagation relations 
discussed in Appendix V, Uncertainties and 
Error Propagation.  

The method can be readily expanded to 
find the parameters for fitting any function 
of the form 
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 f(x; a0,a1,...,am)=a0f0(x)+a1f1(x)+...amfm(x), 
 
 or 
 

     


m

j jjm xfaaaaxf
110 ,,,;  (5) 

 
where the functions fj(x) can be any func-
tions of the independent variable x, but must 
not be functions of any of the parameters. 
For example, the functions fj(x) might be 
terms in a quadratic function of x, such that  
 
 fj(x;A,B,C) = A + Bx + Cx2 . (6) 
 

For non-linear fits, i.e., problems in 
which the fitting function is not linear in the 
parameters, more complicated, non-analytic 
or semi-analytic methods involving searches 
of parameter space are required. 
D. Chi-Square 2 

Once we have found the best-fit values 
of the parameters, we can use them to cal-
culate 2 from Eq. 2. It is convenient to 
define chi-square per degree of freedom as 
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where N is the number of data points, and m 
is the number of parameters determined from 
the fit. 

The expectation value of 2 is  
 
 <2> = N-m. (8) 
 
so the expectation value of the reduced chi-
square is  

 12 DOF  

In introductory laboratory experiments, val-
ues between 0.5 and 1.5 are generally 
acceptable. Values that are too large may 
indicate poor measurements, an incorrect 
choice of theoretical function, or an under-
estimate of the uncertainties. Values that are 
too low almost always result from an over-
estimate of the uncertainties. 

Sometimes you can spot a poorly 
measured quantity by comparing the calcu-
lated and measured values of y. It may be 
appropriate to re-measure or discard such a 
number if this can be reasonably justified. If 
it appears that you have under- or over-
estimated the uncertainties in the dependent 
variable, you may choose to make an 
adjustment. Note that, in general, you must 
scale all the uncertainties in the y-values and 
refit in order to correct a problem of this sort. 
Of course, after making such a correction, 
you will not be able to use 2 as an indicator 
of the quality of the fit. Any adjustments to 
data must be explained in your report. 
E.  Fitting with Origin 

Fortunately, we don’t have to work out 
the details of a fitting problem for ourselves. 
There are many computer programs avail-
able. In the laboratory, we use MPLI, Logger 
Pro, or Origin for all such calculations. (See 
Appendix IV on Origin.) Students who use a 
standard spreadsheet, instead of Origin, 
for their calculations should program the 
correct equations to find the uncertainties 
in the parameters. 

 


